damental layers and also on interstitial sites approximately \pm one layer apart from each middle layer.

The structure of synthetic perryite is closely related to that of $\mathrm{Ni}_{31} \mathrm{Si}_{12}(P 321, a=6.67$ and $c=12.28 \AA$; Frank \& Schubert, 1971). The c-axis length of $\mathrm{Ni}_{31} \mathrm{Si}_{12}$ is approximately one third that of synthetic perryite, and the atomic arrangements in the unit cell of $\mathrm{Ni}_{31} \mathrm{Si}_{12}$ are similar to those in one third of the unit cell of synthetic perryite (Fig. 2), which contains $32 \mathrm{Ni}(\mathrm{Fe})$ atoms and $12 \mathrm{Si}(\mathrm{P})$ Atoms. The interstitial $\mathrm{Ni}(\mathrm{Fe})$ atom marked with an asterisk in layer 4 of Fig. 2 is absent in $\mathrm{Ni}_{31} \mathrm{Si}_{12}$ with significant displacements of the surrounding atoms.

In a similar way, the structure of synthetic perryite is also related to that of $\mathrm{Pd}_{5} \mathrm{Sb}_{2}\left(P 6_{3} c m, a=7.606\right.$ and $c=13.863 \AA$; El-Boragy, Bhan \& Schubert, 1970). In this case, the unit-cell content is $\mathrm{Pd}_{30} \mathrm{Sb}_{12}$, and the two interstitial $\mathrm{Ni}(\mathrm{Fe})$ atoms marked with double asterisks in layers 2 and 7 of Fig. 2 are absent with significant displacements of the surrounding atoms. Thus, the structure of synthetic perryite $(\mathrm{Ni}, \mathrm{Fe})_{8}(\mathrm{Si}, \mathrm{P})_{3}$, which is isomorphous with that of
$\mathrm{Pd}_{8} \mathrm{Sb}_{3}$, is a stacking variant of $\mathrm{Ni}_{31} \mathrm{Si}_{12}$ and $\mathrm{Pd}_{5} \mathrm{Sb}_{2}$ structures.

References

El-Boragy, M., Bhan, S. \& Schubert, K. (1970). J. LessCommon Met. 22, 445-458.
Ellner, M., Heinrich, S., Bhargava, M. K. \& Schubert, K. (1979). J. Less-Common Met. 66, 163-173.

Frank, K. \& Schubert, K. (1971). Acta Cryst. B27, 916-920.
Fredriksson, K. \& Henderson, E. P. (1965). Trans. Am. Geophys. Union, 46, 121.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Okada, A., Keil, K. \& Taylor, G. J. (1988). Meteoritics, 23, 59-74.
Reed, S. J. B. (1968). Mineral. Mag. 36, 850-854.
Sakural, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.
Wal, C. M. (1970). Mineral. Mag. 37, 905-908.
Wopersnow, W. \& Schubert, K. (1976). J. Less-Common Met. 48, 79-87.

Acta Cryst. (1991). C47, 1361-1364

CoAPO-21, a Cobalt-Doped Aluminophosphate Related to AIPO $_{4}$-21

By G. M. T. Cheetham and Marjorie M. Harding
Chemistry Department, Liverpool University, PO Box 147, Liverpool L69 3BX, England
P. J. Rizkallah
Chemistry Department, Liverpool University, PO Box 147, Liverpool L69 3BX, England and SERC Daresbury Laboratory, Warrington WA4 4AD, England
Venčeslav Kaučič
Department of Chemistry and Chemical Technology, University of Ljubljana, 61000 Ljubljana, Yugoslavia and Boris Kidrič Institute of Chemistry, 61000 Ljubljana, Yugoslavia
and Nevenka Rajić
Boris Kidrič Institute of Chemistry, 61000 Ljubljana, Yugoslavia

(Received 21 August 1990; accepted 11 January 1991)

Abstract

Co}_{0.12} \mathrm{Al}_{5.88} \mathrm{P}_{6} \mathrm{O}_{24}(\mathrm{OH})_{2} . \mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2} .2 \mathrm{H}_{2} \mathrm{O}, M_{r}\) $=867 \cdot 7$, monoclinic, $\quad P 2_{1} / n, \quad a=8.992(3), \quad b=$ 17.760 (8), $\quad c=8.359(4) \AA, \quad \beta=105.39(4)^{\circ}, \quad U=$ $1287.0 \AA^{3}, Z=2, D_{x}=2.24 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=0.895$ (5) \AA, $\mu=14.7 \mathrm{~cm}^{-1}, F(000)=871.4, R=0.061$ for 1163 observed reflections, recorded with an area-detector diffractometer. The framework structure is similar to that of $\mathrm{AlPO}_{4}-21$ [Parise \& Day (1985). Acta Cryst. 0108-2701/91/071361-04\$03.00

C41, 515-520], with 4-, 5- and 6-coordinate aluminium atoms; Co^{2+} replaces tetrahedral Al^{3+} ions, and the 6 -coordinate Al^{3+} has one water molecule as ligand (in addition to 5 framework O atoms). In the channels, the C and N atoms of the ethylenediamine molecule were located; the molecules are disordered, and occupy two mutually exclusive positions related by an inversion centre.
© 1991 International Union of Crystallography

Introduction. A new group of microporous materials based on the aluminophosphate lattice has recently been the subject of intense investigation. These materials are characterized by a pronounced structural diversification: more than two dozen structure types have been reported (Bennet, Dytrych, Pluth, Richardson \& Smith, 1986). Although there are indications (Pyke, Whitney \& Houghton, 1985) that their range of microporosities make them useful for catalytic and absorption applications, the data for their structural characterization are still scarce. One of the reasons is probably that large single crystals are difficult to obtain. Structures of these materials, designated AlPO-n, where n denotes a specific structure type are named on the basis of similarity to known zeolite structures. Some structures, however, are completely new and have no zeolite analogs. The substitution of metallic elements such as cobalt or iron (Flanigen, Lok, Patton \& Wilson, 1986) into the neutral aluminium-phosphorus framework during synthesis gives rise to novel acidic and catalytic properties, the previously uncharged frameworks being unable to function as solid acid catalysts. In summary, their remarkable diversity in crystal structure and crystal chemistry offers a nearly unlimited number of design parameters to tailor adsorptive and catalytic properties. In this paper we report the crystal structure of CoAPO-21 from single-crystal synchrotron X-ray data. This is the first metalsubstituted AlPO_{4} with the structure type 21.

Experimental. Synthesis used a reaction gel of molar composition $0.4 \mathrm{Co}(\mathrm{ac})_{2}: 0.8 \mathrm{Al}_{2} \mathrm{O}_{3}: 1.0 \mathrm{P}_{2} \mathrm{O}_{5}: 1.0$ en $50 \mathrm{H}_{2} \mathrm{O}$ (ac = acetate ion, en = ethylenediamine), and followed the procedure of Wilson \& Flanigen (1986). Crystallization, in a teflon-lined autoclave under static conditions at 468 K over 4 d yielded royal blue needle-shaped crystals, which were designated CoAPO-21 on the basis of the similarity of their X-ray powder pattern and crystal morphology to $\mathrm{AlPO}_{4}-21$; one of the largest crystals, $150 \times 40 \times$ $30 \mu \mathrm{~m}$, was used here. Bulk chemical analysis gave $\left(\mathrm{Co}_{0.08} \mathrm{Al}_{0.42} \mathrm{P}_{0.50}\right) \mathrm{O}_{2} * 0 \cdot 09 \mathrm{en} * 0 \cdot 10 \mathrm{H}_{2} \mathrm{O}$, an IR spectrum of this material exhibiting a medium band at $1520 \mathrm{~cm}^{-1}$, indicating that en molecules are present as protonated species.

Unit-cell determination and intensity measurement followed the procedure described by Rizkallah, Maginn \& Harding (1990) using synchrotron radiation (SRS, Daresbury Laboratory, Warrington, England), the Enraf-Nonius FAST area-detector diffractometer, and MADNES software (Messerschmidt \& Pflugrath, 1987), except that the implementation of MADNES included an amended polarization correction (Papiz, 1989). SRS running at 2 GeV , 200 mA , collimator $0.2 \mathrm{~mm}, \varphi$ range $185^{\circ}, 1^{\circ}$ frames accumulated for 10 s each, detector tilt -28°, crystal
detector distance 40 mm , thus minimum accessible d $\left(=\lambda / 2 \sin \theta_{\max }\right)=0.85 \AA$, effective mosaic spread $4 \cdot 2^{\circ}$. $-9 \leq h \leq 8,0 \leq k \leq 18,0 \leq l \leq 8.2532$ reflection intensities measured, yielding 1675 unique intensities ($R_{\text {merge }}=0.063$) of which 1165 were considered observed (MADNES flag $=0, R_{\text {merge }}$ for these alone $=0.032$). The structure was solved by direct methods (SHELXS86; Sheldrick, 1986).
The atoms of the ethylenediamine molecule, disordered, on two overlapping sites, were identified in an electron density difference map. In refinement (on F) (SHELX76; Sheldrick, 1976), the C-C and $\mathrm{C}-\mathrm{N}$ distances were restrained to $1.54(2)$ and 1.47 (2) \AA, C and N were assigned site occupancy 0.5 and isotropic vibration parameters, H atoms were ignored, anisotropic vibration parameters were used for all other atoms, weights $w=1 /\left[\sigma^{2}(F)+\right.$ $0.0001 F^{2}$), and scattering factors as in $\operatorname{SHELX} 76$, 198 parameters in all. After some refinement (with equal fixed U values for Al) occupancy factors for the three Al sites of $1.07(1), 1.00(1)$ and $0.98(1)$ suggested that the first was the site where Co replaced Al ; subsequently $\mathrm{Al}(1)$ was treated as a site occupied by $p \mathrm{Co}+(1-p) \mathrm{Al}$ atoms and p was refined. This converged to $R=0.061, w R=0.062, S$ $=1 \cdot 65$, for 1163 observations; the maximum and minimum electron density in the final difference map was 1.10 and $-0.55 \mathrm{e} \AA^{-3}$, mainly around the en template molecule; $(\Delta / \sigma)_{\max }=0 \cdot 12$, except for the template atoms.

Discussion. Table 1 gives atom parameters,* Table 2 selected bond lengths and angles, and Fig. 1 illustrates the structure.

The zeolite-like framework of Al, P and O atoms except $\mathrm{O}(14)$ corresponds to the $\mathrm{AlPO}_{4}-21$ framework described by Parise \& Day (1985) and by Bennet, Cohen, Artioli, Pluth \& Smith (1985) with a close similarity to the $\mathrm{Al}-\mathrm{O}$ and $\mathrm{P}-\mathrm{O}$ bond distances in both of these.
Following Bennett et al. (1985) we assume that $\mathrm{O}(9)$ represents a hydroxyl group which forms the bridge $\mathrm{Al}(2)-\mathrm{OH}-\mathrm{Al}(3) . \mathrm{Al}(1)$ is 4 coordinate, tetrahedral, and it is at this site that the cobalt substitution appears to take place, consistent with the blue colour of the crystals. $\mathrm{Al}(2)$ is 5 -coordinate, approximately trigonal bipyramidal, while $\mathrm{Al}(3)$ has 5 framework O atoms as neighbours, at 1.813 (7)1.906 (7) \AA, and one additional O atom, $O(14)$, at $2 \cdot 185$ (7) \AA. We identify $\mathrm{O}(14)$ as a water molecule; its presence is consistent with the chemical analysis

[^0]Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$				
	x	y	z	$U_{\text {eq }}$
	x	$y(1) / \mathrm{Co}^{*}$	$0.3060(3)$	$0.8205(2)$
$\mathrm{Al}(2)$	$0.7079(3)$	$0.7061(2)$	$-0.0171(3)$	$0.0098(16)$
$\mathrm{Al}(3)$	$0.8246(4)$	$0.8946(2)$	$-0.1224(3)$	$0.0091(16)$
$\mathrm{P}(1)$	$0.5223(3)$	$0.7099(1)$	$0.2075(3)$	$0.0119(16)$
$\mathrm{P}(2)$	$0.5029(3)$	$0.8287(1)$	$-0.2740(3)$	$0.0125(15)$
$\mathrm{P}(3)$	$0.8629(3)$	$1.0712(1)$	$-0.1588(3)$	$0.0101(14)$
$\mathrm{O}(1)$	$0.5830(8)$	$0.6943(4)$	$0.0581(7)$	$0.0176(39)$
$\mathrm{O}(2)$	$0.4049(8)$	$0.7743(3)$	$0.1663(8)$	$0.0184(40)$
$\mathrm{O}(3)$	$0.4463(8)$	$0.6395(3)$	$0.2478(7)$	$0.0161(39)$
$\mathrm{O}(4)$	$0.6535(8)$	$0.7335(3)$	$0.3567(7)$	$0.0149(38)$
$\mathrm{O}(5)$	$0.4299(8)$	$0.8494(4)$	$-0.1315(7)$	$0.0224(41)$
$\mathrm{O}(6)$	$0.5605(7)$	$0.7477(3)$	$-0.2513(7)$	$0.0128(37)$
$\mathrm{O}(7)$	$0.3844(8)$	$0.8378(3)$	$-0.4387(7)$	$0.0174(40)$
$\mathrm{O}(8)$	$0.6344(8)$	$0.8835(4)$	$-0.2693(8)$	$0.0173(38)$
$\mathrm{O}(9)$	$0.8020(8)$	$0.7986(3)$	$-0.0294(7)$	$0.0153(38)$
$\mathrm{O}(10)$	$0.8161(8)$	$1.1177(3)$	$-0.3171(7)$	$0.0176(38)$
$\mathrm{O}(11)$	$0.8297(7)$	$0.9903(3)$	$-0.2066(7)$	$0.0101(36)$
$\mathrm{O}(12)$	$1.0327(8)$	$1.0834(3)$	$-0.0708(7)$	$0.0162(38)$
$\mathrm{O}(13)$	$0.2626(8)$	$0.4056(3)$	$0.4584(8)$	$0.0196(40)$
$\mathrm{O}(14)$	$0.1770(12)$	$0.5565(6)$	$0.5214(13)$	$0.0793(79)$
$\mathrm{N}(1) \dagger$	$0.470(3)$	$0.008(2)$	$0.531(3)$	$0.0689(62)$
$\mathrm{N}(2) \dagger$	$0.136(3)$	$-0.013(1)$	$0.603(3)$	$0.0537(62)$
$\mathrm{C}(1) \dagger$	$0.237(3)$	$0.057(1)$	$0.610(4)$	$0.0647(86)$
$\mathrm{C}(2) \dagger$	$0.417(3)$	$0.053(2)$	$0.655(3)$	$0.0613(82)$

* Site occupancy refined to 0.06 (1) for $\mathrm{Co}, 0.94$ (1) for $\mathrm{Al}(1)$. \dagger Site occupancy 0.5.

Fig. 1. a-axis projection showing alternative positions of the ethylenediamine molecule (one of them in dashed lines, H atoms omitted) in the channel. The two good hydrogen bonds to one $\mathrm{N}(1)$ are shown. $\mathrm{O}(13)^{*}$ and $\mathrm{O}(14)^{*}$ are related to $\mathrm{O}(13)$ and $\mathrm{O}(14)$ by $\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$.
and its other contacts are with an $\mathrm{O}(5)$ at $2.79 \AA$ and an $\mathrm{O}(13)$ at $2.87 \AA$, appropriate for two hydrogen bonds. Parise \& Day (1985) identify this peak as the N atom of a disordered ethylenediamine molecule, while Bennett et al. (1985) do not find an atom at this position at all.

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Al}(1)-\mathrm{O}(2){ }^{\text {i }}$	1.756 (7)	$\mathrm{P}(1)-\mathrm{O}(1)^{\mathrm{i}}$	$1 \cdot 512$ (7)
$\mathrm{Al}(1)-\mathrm{O}(4)^{\text {iv }}$	1.766 (7)	$\mathrm{P}(1)-\mathrm{O}(2){ }^{\text {i }}$	1.527 (7)
$\mathrm{Al}(1)-\mathrm{O}(5){ }^{\prime}$	1.721 (7)	$\mathrm{P}(1)-\mathrm{O}(3)^{\text {i }}$	1.502 (7)
$\mathrm{Al}(1)-\mathrm{O}\left(13^{\text {ii }}\right.$	1.749 (7)	$\mathrm{P}(1)-\mathrm{O}(4)^{\text {i }}$	1.525 (7)
$\mathrm{Al}(2)-\mathrm{O}(1)^{\prime}$	1.784 (7)	$\mathrm{P}(2)-\mathrm{O}(5)^{\text {i }}$	1.545 (7)
$\mathrm{Al}(2)-\mathrm{O}(6){ }^{\text {' }}$	1.849 (7)	$\mathrm{P}(2)-\mathrm{O}(6){ }^{\text {i }}$	1.523 (7)
$\mathrm{Al}(2)-\mathrm{O}(7)^{\text {iv }}$	1.852 (6)	$\mathrm{P}(2)-\mathrm{O}(7)^{\text {i }}$	1.506 (7)
$\mathrm{Al}(2)-\mathrm{O}(9){ }^{\text {i }}$	1.838 (7)	$\mathrm{P}(2)-\mathrm{O}(8){ }^{\text {i }}$	1.517 (7)
$\mathrm{Al}(2)-\mathrm{O}(10)^{\text {i }}$	1.795 (6)	$\mathrm{P}(3)-\mathrm{O}(10)^{\text {i }}$	1.522 (7)
$\mathrm{Al}(3)-\mathrm{O}(3)^{\prime \prime}$	1.831 (7)	$\mathrm{P}(3)-\mathrm{O}(11)^{\text {i }}$	1.499 (6)
$\mathrm{Al}(3)-\mathrm{O}(8){ }^{\prime}$	1.822 (7)	$\mathrm{P}(3)-\mathrm{O}(12)^{\text {i }}$	1.514 (7)
$\mathrm{Al}(3)-\mathrm{O}(9){ }^{\text {' }}$	1.906 (7)	$\mathrm{P}(3)-\mathrm{O}(13)^{v}$	1.547 (6)
$\mathrm{Al}(3)-\mathrm{O}(11)^{\mathrm{i}}$	1.846 (7)		
$\mathrm{Al}(3)-\mathrm{O}(12)^{\text {in }}$	1.813 (7)		
$\mathrm{Al}(3)-\mathrm{O}(14)^{\text {iv }}$	2.185 (7)		
$\mathrm{Al}(2)-\mathrm{O}(1)-\mathrm{P}(1)$	155.9 (5)	$\mathrm{Al}(2)-\mathrm{O}(9)-\mathrm{Al}(3)$	$143 \cdot 8$ (4)
$\mathrm{Al}(1)-\mathrm{O}(2)-\mathrm{P}(1)$	134.7 (5)	$\mathrm{Al}(2)-\mathrm{O}(10)-\mathrm{P}(3)$	151.7 (4)
$\mathrm{Al}(3)-\mathrm{O}(3)-\mathrm{P}(1)$	141.5 (4)	$\mathrm{Al}(3)-\mathrm{O}(11)-\mathrm{P}(3)$	$143 \cdot 5$ (4)
$\mathrm{Al}(1)-\mathrm{O}(4)-\mathrm{P}(1)$	129.8 (4)	$\mathrm{Al}(3)-\mathrm{O}(12)-\mathrm{P}(3)$	145.6 (4)
$\mathrm{Al}(1)-\mathrm{O}(5)-\mathrm{P}(2)$	$145 \cdot 3$ (5)	$\mathrm{Al}(1)-\mathrm{O}(13)-\mathrm{Al}(3)$) 135.5 (4)
$\mathrm{Al}(2)-\mathrm{O}(6)-\mathrm{P}(2)$	128.4 (4)		
$\mathrm{Al}(2)-\mathrm{O}(7)-\mathrm{P}(2)$	142.5 (4)		
$\mathrm{Al}(3)-\mathrm{O}(8)-\mathrm{P}(2)$	131.5 (4)		
Symmetry transformation of oxygen coordinates: (i) x, y, z; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x,-y,-z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$.			

ymmetry transformation of oxygen coordinates: (i) x, y, z;
(ii) $\frac{2}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$;
(v) $\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$.
$\mathrm{N}(1)$ is 0.44 (3) \AA from an inversion centre; the ethylenediamine molecule must be disordered between two sets of positions, each 50% occupied. $\mathrm{N}(1)$ can form two hydrogen bonds to framework O atoms, $\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(8)$ (at $x, y, z+1) 2 \cdot 92 \AA$, and $\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(8)($ at $-x,-y,-z) 2 \cdot 88 \AA$; around each N atom there are a further three framework oxygens at distances between $3 \cdot 1$ and $3 \cdot 3 \AA$. Two doubly charged ions, $\mathrm{H}_{3} \mathrm{~N}^{+} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH}_{3}{ }_{3}$, per unit cell (or four halves) would have the correct charge to balance the framework of composition equivalent to $4\left[\mathrm{Al}_{3} \mathrm{P}_{3} \mathrm{O}_{12}(\mathrm{OH})^{-}\right]$. Our interpretation of the template atom positions is different from that of Parise \& Day (1985), but fits the electron density in the channel.

We are grateful to SERC for financial support including a studentship (GMTC), to SERC Daresbury Laboratory for experimental and computational facilities, and to the Royal Society for financial support (VK).

References

Bennett, J. M., Cohen, J. M., Artioli, G., Pluth, J. J. \& Smith, J. V. (1985). Inorg. Chem. 24, 188-193.

Bennett, J. M., Dytrych, W. J., Pluth, J. J., Richardson, J. W. \& Smith, J. V. (1986). Zeolites, 6, 349-360.

Flanigen, E. M., Lok, B. M., Patton, L. R. \& Wilson, S. T. (1986). Pure Appl. Chem. 58, 1351-1358.

Messerschmidt, A. \& Pflugrath, J. W. (1987). J. Appl. Cryst. 20, 306-315.
Papiz, M. S. (1989). Personal communication.

Parise, J. B. \& Day, C. S. (1985). Acta Cryst. C41, 515-520.
Pyke, D. R., Whitney, P. \& Houghton, H. (1985). Appl. Catal. 18, 173-190.
Rizkallah, P. J., Maginn, S. J. \& Harding, M. M. (1990). Acta Cryst. B46, 262-266.

Crystal Chemistry of cyclo-Hexaphosphates. XVII. Structure of Chromium cyclo-Hexaphosphate Henicosahydrate

By M. Bagieu-Beucher and M. T. Averbuch-Рouchot
Laboratoire de Cristallographie, associé à l'Université J. Fourier CNRS, 166X, 38042 Grenoble CEDEX, France
and M. Rzaigu
Ecole Normale Supérieure, Zarzouna Bizerte, 7021 Tunisia

(Received 31 August 1990; accepted 21 January 1991)

Abstract

Cr}_{2}\left[\mathrm{P}_{6} \mathrm{O}_{18}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=956 \cdot 13\), cubic, $P \overline{4} 3 n, a=19.052$ (10) $\AA, V=6915$ (11) $\AA^{3}, Z=8, D_{x}$ $=1.837 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \quad \mu=$ $1.062 \mathrm{~mm}^{-1}, F(000)=3936$, room temperature, final $R=0.053$ for 1655 independent reflections. The atomic arrangement of $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .21 \mathrm{H}_{2} \mathrm{O}$ is a stacking of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions, $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra and nonbonded water molecules interconnected by hydrogen bonds only. The phosphoric ring anion has a threefold internal symmetry. One of the water molecules building the coordination polyhedron of $\mathrm{Cr}(1)$ is disordered.

Introduction. Crystal structure of anhydrous chromium cyclo-hexaphosphate, $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18}$, was determined some years ago (Bagieu-Beucher \& Guitel, 1977). Up to now, no mention of the existence of possible hydrates of this salt has been reported in the chemical literature. Recently one of us (Rzaigui, 1990) characterized the first hydrate of this phosphate: $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$. The present work is devoted to the determination of the crystal structure of this hydrate.

Experimental. The preparation of $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$ and its main chemical properties have been reported elsewhere (Rzaigui, 1990). Crystal size: $0.32 \times 0.32 \times$ 0.27 mm (a rhombic dodecahedron). Density not measured. Nicolet diffractometer, graphite monochromator. 25 reflections ($10.75<\theta<12.60^{\circ}$) for refining unit-cell dimensions. ω scan, scan width $1 \cdot 40^{\circ}$, scan speed $0.01^{\circ} \mathrm{s}^{-1}$, total background measuring time 14 s .7359 measured reflections, h, k, l,

0108-2701/91/071364-03\$03.00
$h_{\max }=k_{\max }=l_{\text {max }}=26$. Three intensity and orientation reference reflections $(222, \overline{2} 22,411)$ measured every 500 reflections with no significant variations. The systematic absences, $h h l(l=2 n)$, the symmetry of the intensities and the study of the Patterson function lead to the space group $P \overline{4} 3 n$. Lorentz and polarization corrections, no absorption correction. 1807 unique reflections ($R_{\mathrm{int}}=0.02$). The crystal structure has been solved by classical methods: study of the three-dimensional Patterson function followed by successive Fourier syntheses. A problem occurred with the water molecule $\mathrm{O}(W 1)$; first refined in the special position $12(f)$, this molecule had a very high thermal factor with an abnormally short $\mathrm{Cr}(1)$ $\mathrm{O}(W \mathrm{l})$ distance. A careful examination of Fourier maps showed that this water molecule is in fact disordered and split into three fragments of approximately identical weight. Two of these fragments occupy the general position while the third one is located on the special position $12(f)$. These three fragments are denoted $\mathrm{O}(W 1), \mathrm{O}(W 11)$ and $\mathrm{O}(W 12)$. Refinements of the occupancy rates of these three fragments led to $0.186,0.166$ and 0.157 respectively, whose sum (0.499) is close to the expected value of 0.500 . H atoms were located by difference Fourier syntheses with the exception of those corresponding to the disordered water molecule and to $\mathrm{O}(W 9)$, a non-bonded water molecule. Anisotropic full-matrix least-squares refinement (on F), isotropic for \mathbf{H} atoms. Unit weights. Scattering factors for neutral atoms and $f^{\prime \prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B). EnrafNonius SDP (1977) used for all calculations. Com(C) 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53912 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

